

Adaptive E-learning System for Language Learning: Architecture Overview

Božidar Kovačić , Vanja Slavuj

Department of Informatics University of Rijeka, Rijeka, Croatia

Outline

Introduction

- computers in language learning
- computer-based language learning
- Tutoring
 - vs. teaching
 - software
 - intelligent tutoring systems
- Architecture proposition
 - system characteristics
 - roles and implementation of system models and modules
- Conclusion

Introduction – computers in LL

- Using computers for language teaching/learning may be designated as
 - (1) computer-enhanced language learning, or
 - (2) computer-based language learning.
- Although similar, a distinction may be drawn between the two terms

Computer-enhanced language learning

- Using computer software as teaching aide to support and complement day-to-day activities
- Technologies/tools:
 - spell checkers,
 - digital dictionaries or glossaries,
 - wikis,
 - blogs,
 - social networks, etc.
- These help teachers (and students) to carry out language learning activities with increased efficacy and efficiency

Computer-based language learning

- Characterised by the use of advanced language learning software (web-based or standalone)
- The software acts independantly in constructing learners' linguistic knowledge and developing language competences and skills
- The computer acts as a tutor, role different than that of a teacher in the traditional sense

Tutoring role

- Learning process is adapted to the needs of individual students – personalisation
- Tutor's tasks include:
 - monitoring the learner,
 - infering learner's characteristics,
 - making appropriate on-the-spot adjustments to the teaching process.

Tutoring software

- Intelligent computer assisted language learning (ICALL) field deals with the development of tutoring software and research of its effects on teaching/learning
- Technology able to address tutoring requirements is intelligent tutoring systems (ITSs)
 - represent a micro-adaptive approach to adaptivity;
 - evaluate learner actions during the entire course of learning;
 - keep an up-to-date learner model of relevant learner characteristics;
 - make informed decisions on how learning is adapted to learners' needs;
 - traditionally consist of 4 models: domain model, learner model, instructional model and interface model.

Language tutoring systems in use

- Often developed for commercial purposes
 - costs,
 - complexity of design, implementation and maintenance,
 - multidisciplinary context.
- Relevant literature reveals a number of systems developed for research purposes
- Systems differ in adaptation methods employed
 - individualised feedback (TAGARELLA, E-Tutor);
 - transforming learning content (AL-TESL-e-learning system, UoLmP);
 - adjusting the sequence of learning activities (VocabTutor, PIMS).

Language tutoring systems – issues

• Existing systems exhibit certain issues

- horizontal restriction,
- vertical restriction, and
- overt focus on curriculum.
- The emphasis today is on the integrative approach to language teaching and learning, bringing together language skills, general and language strategies, and linguistic knowledge for the purpose of enabling communication

Adaptive e-learning system - overview

- Main characteristics of the system:
 - adaptive,
 - web-based,
 - enriched traditional ITS structure,
 - teaching/learning English,
 - for learners with different level od language competence,
 - under development.
- The system has a twofold purpose:
 - (1) identification of the level of a learner's language competence, and
 - (2) systematic learning support through guidance (based on CEFR competence level of learners)

Architecture of the proposed system

Domain designer

Proposed system components 2/4

- Learner model initialization module
 - deals with the initial lack of knowledge about the learner;
 - adaptive computerised test with Item Response Theory as the basis.

Proposed system components 1/4

Domain model

- implementation in two parts: (1) domain organisation part, and (2) a database containing all learning materials;
- designed based on the Common European Framework of Reference for Languages (CEFR), for each skill separately;
- enables highly granular monitoring of learner progress;
- focus shifted from achievement to proficiency.

Learner model

- represented by an up-to-date database of each learner's characteristics and domain coverage by the same learner – a version of the well-known overlay model;
- initialisation problem solved by implementing an adaptive testing procedure.

Proposed system components 3/4

Instructional model

- central point of the system and the educational process;
- defines the logic of system behaviour;
- implemented as a repository of heuristic rules concerning tutoring/teaching;
- rules are activated according to the values stored in the learner model.

Controller module

- coordinates the work of the entire adaptive system;
- responsible for checking values stored in the learner model, selecting rules and applying them during the learning process;
- also able to deal with possible learner requests for learning.

Proposed system components 4/4

Evaluation module

- evaluates the accuracy of learner activities;
- proscribes how learner activity will be mapped onto the learner model (i.e., how it is updated).

Interface model

- communication point between the learner and the system;
- access using a web-browser;
- client-side technologies (AJAX) in implementation.

Conclusion & future work

- Architecture overview of an adaptive e-learning system for language learning
 - enriched traditional ITS architecture
- System addresses issues detected in other adaptive language-learning systems in use
- Aims to detect the CEFR competence level of learners and guide them towards higher levels of proficiency
- Future work
 - completion of the system,
 - testing the system with learners.

Thank you for your attention.

